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Averaged model and integrable limits in nonlinear double-periodic Hamiltonian systems
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We derive average propagation model for a nonlinear wave dynamics in media with periodically varying
parameters considering a general case with different periods of the nonlinearity and dispersion oscillations.
Applying quasi-identical canonical transformation we find the conditions when the averaged Hamiltonian
dynamics is close to an integrable model. We apply general theory to the practical problem of optical signal
transmission in fiber lines with short-scale dispersion management.

PACS number~s!: 05.45.Yv, 02.30.Jr
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I. INTRODUCTION

Propagation of powerful, high-frequency nonlinear wa
in media with varying dispersion is a fundamental physi
problem with a wide range of practical applications like, f
instance, optical pulse transmission in dispersion-mana
~DM! fiber lines @1#, a stretched pulse generation in mod
locking fiber laser systems@2#, propagation of high intensi
ties beams in second order nonlinear media with perio
poling ~see, e.g., Ref.@3# and references therein!, evolution
of soliton in a periodically modulated nonlinear wave gui
and other applications. Of particular interest is an opti
pulse transmission in fiber, that is a superb demonstratio
practical application of the fundamental soliton theory@4–8#.
The traditional path-averaged soliton propagation in fi
lines with uniform ~or even weakly varying! dispersion is
governed@7,9# by the integrable@4# nonlinear Schro¨dinger
equation~NLSE!. Integrability of the NLSE makes possibl
to apply powerful mathematical method of the inverse sc
tering transform@4# to a variety of practical problems~see,
e.g., Refs.@5–8#!. Experimental@9# ~and even first commer
cial @10#! implementations of the multichannel soliton tran
mission have stimulated further studies in soliton theory.
particular, soliton propagation in the systems with lar
variations of dispersion and nonlinearity has recently b
put in the focus of intensive research@1,2,9,12–21#. Tradi-
tional soliton solution of the NLSE with uniform dispersio
and without loss realizes continuous balance between no
earity and dispersion. Variations of dispersion and nonline
ity make impossible in general case to support such bala
continuously. Nevertheless, a balance between nonlinea
fects and dispersion can be achievedin averageover the
compensation period. Because of the fundamental and p
tical importance of this problem, it is of interest to devel
generic theoretical methods to analyze properties of the b
model that can be used in a variety of specific applicatio

In this paper, generalizing our previous results we der
path-average model in a case of different~rational commen-
surable! periods of nonlinearity and dispersion oscillation
This general model includes all previously studied physi
systems and also describes a new regime with short-s
dispersion oscillations. Applying quasi-identical transform
PRE 611063-651X/2000/61~3!/3127~6!/$15.00
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tion @11–13# we demonstrate that the averaged dynamics
high-frequency nonlinear wave in systems with larg
amplitude, periodic variations of dispersion and nonlinear
can be described in some particular limits by the integra
NLSE. As a specific physical and practical application of t
general analysis, we present path-averaged theory of
transmission lines with different periods of the power var
tion and dispersion compensation.

II. BASIC MODEL AND QUASI-IDENTICAL TRANSFORM

Evolution ~in z) of a high-frequency wave in medium
with periodically varying dispersion and nonlinearity is go
erned by the NLSE with periodic coefficients that can
written in the Hamiltonian form

i
]A

]z
5$A,H%5

dH

dA*
52d~z!Att2e c~z!uAu2A, ~1!

with the Hamiltonian

H5E H d~z!uAtu22
e c~z!

2
uAu4J dt, ~2!

and the Poisson brackets are defined as

$F,G%5E S dF

dA

dG

dA*
2

dF

dA*

dG

dA D dt. ~3!

Here periodic functiond(Z)5d̃1^d& (^d̃&50) describes
varying dispersion with the periodL ~in real world units! and
c(Z) corresponds to power oscillations with the periodZa .
We consider a general case whenL andZa are rational com-
mensurable, namely,nZa5mL5Z0 with integer n and m.
This includes as particular limits all known and studied ca
and allows us to describe a novel regime with short-sc
(L!Za) management. The distancez5Z/Z0 is normalized
by a minimal common periodZ0 of the functionsd andc and
the averaging throughout the paper is over this period. In
normalized units 1-periodicd andc have basic periods 1/m
and 1/n, respectively. Small parametere5Z0 /ZNL ~see, e.g.,
Refs. @1# and @12#! is proportional to the pulse power (ZNL
3127 ©2000 The American Physical Society
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here is a characteristic nonlinear scale!. True breathing soli-
ton presents a solution of Eq.~1! of the form A(z,t)
5exp(ikz)F(z,t) with a periodic functionF(z11,t)5F(z,t).
Of interest is to find a systematic way to describe a family
periodic solutionsF with different quasi-momentumk. The
basic idea suggested in Ref.@12# ~see also@1,13,14,19# is to
use a small parametere to derive path-averaged model th
gives regular, leading order ine, description of the breathing
soliton. Averaging cannot be performed directly in Eq.~1! in
the case of the large variations ofd̃@^d&. However, path-
averaged propagation equation can be obtained in the
quency domain@12#. In this paper we show that in som
important limits an averaged equation for periodic breath
pulse can be transformed to theintegrableNLS equation.

First, to eliminate the periodic dependence of the lin
part we apply following@12# the so-called Floquet-Lyapuno
transformation@11#

Av5fvexp $2 iv2R~z!%,
dR~z!

dz
5d~z!2^d&. ~4!

Here, Av5A(v,z) is a Fourier transform ofA(t,z)
5*Avexp@2ivt#dv. Important observation~will be used be-
low! is that for a fixed amplitude ofd amplitude of the varia-
tion of the functionR decreases with the increase ofm. It can
be easily found that max@R(z)#}1/m. In the new variables the
equation takes the form

i
]fv

]z
2^d&v2fv1eE Gv123~z!d~v1v12v22v3!

3f1* f2f3dv1dv2dv350, ~5!

here Gv123(z)5c(z)exp$iDVR(z)% is 1-periodic andDV
5v21v1

22v2
22v3

2. Note thatGv123 depends only on the
specific combination of the frequencies given by the re
nance surfaceDV. Both the Fourier and the Floque
Lyapunov transform~4! are canonical and the transforme
HamiltonianH reads

H5^d&E v2ufvu2dv2«E Gv123

2

3d~v1v12v22v3!fv* f1* f2f3dvdv1dv2dv3 .

~6!

Now we apply Hamiltonian averaging. Let us make t
following change of the variables

fv5exp@$«K, . . . %#wv5wv2e$K,wv%1•••

5wv1eE Vv123d~v1v12v22v3!

3w1* w2w3dv1dv2dv31•••,

here the functional K50.5*Vv123d(v1v12v22v3)
3wv* w1* w2w3dvdv1dv2dv3 and Vv123(z)5 i *0

z@Gv123(t)
2Tv123#dt1 i Vv123(0), (^Vv123&50) with
f

e-

g

r

-

Tv1235^Gv123&5E
0

1

Gv123~z!dz

5E
0

1

c~z!exp $ iDVR~z!%dz. ~7!

In the leading order ine, a path-averaged equation has t
form

i
]wv

]z
2^d&v2 wv1eE Tv123d~v1v12v22v3!

3w1* w2w3dv1dv2dv350, ~8!

The corresponding averaged Hamiltonian H is

^H&5^d&E v2uwvu2dv2«E Tv123

2

3d~v1v12v22v3!wv* w1* w2w3dvdv1dv2dv3 .

~9!

The Hamiltonian averaging introduced here present
regular way to calculate next-order corrections to the av
aged model. From the Hamiltonian structure of the start
equation it is clear that the matrix elementTv123 has the
following symmetries Tv1235T1v235Tv1325T23v1* . Note
that the Eq.~8! possesses the remarkable property. The m
trix elementTv1235T(DV) is a function ofDV and on the
resonant surfacev1v12v22v350, DV5v21v1

22v2
2

2v3
250, bothTv123 and its derivative overDV are regular.

This observation allows us to make the following qua
identical-like transformation@13#, which eliminates the vari-
able part of the matrix elementTv123

wv5av2
e

^d&E T02Tv123

DV
a1* a2a3

3d~v1v12v22v3!dv1dv2dv3 , ~10!

whereT05T(0). This transformation has no singularities.
the integral part in this transform is small compared withav ,
then in the leading order we get forav

i
]av

]z
2^d&v2av1eE T0

3d~v1v12v22v3!a1* a2a3dv1dv2dv350. ~11!

This is nothing more, but the integrable nonlinear Sch¨-
dinger equation written in the frequency domain. Obvious
this transformation is quasi-identical only if the integral
Eq. ~10! is small compared withav . This is not true in a
general case and that is why, typical solution of Eq.~8! has a
form @14# different from cosh-shaped NLSE soliton. How
ever, if the kernel function in Eq.~10! is small

uS~DV!u5UT02Tv123~DV!

DV U!1, ~12!

then the averaged model can be reduced to the NLSE
other terms, this is a condition on the functionsc(z) and
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d(z) that makes possible quasi-identical transformation
the condition~12! is satisfied we can express solutions of t
Eq. ~8!, and, consequently, of the original Eq.~1! via solu-
tions of the NLSE in the explicit form:

A~ t,z!5E ave$2 ivt2 iv2 R%dv1e E Wv123a1* a2a3

3d~v1v12v22v3!dv1dv2dv3dv,

here Wv123(z)5@Vv1232(T02Tv123) /^d&DV#exp$2ivt
2iv23R(z)% andav is a solution of the NLSE~11!.

III. PATH-AVERAGE MODEL FOR DOUBLE-PERIODIC
DM SYSTEMS WITH LÌZa „LONG-HAUL FIBER

TRANSMISSION LINES …

Now we apply developed above general theory to a p
ticular, but important physical problem, namely we consid
soliton transmission in fiber lines. In the optical applicatio
the periodic functionsd(z) andc(z) are

d~z!5
l0

2D~z!Z0

4pcl t0
2

,

c~z!5P0Z0sexp@22Z0g~z2zk!#,

zk<z,zk11. ~13!

Here, t0 is a characteristic time parameter,P0 is a char-
acteristic power,cl is the speed of light,l0 is the operating
wavelength,D(z) is the dispersion coefficient varying alon
the fiber line; the nonlinear coefficients52p n2 /(l0Ae f f)
wheren2 is the nonlinear refractive index,Ae f f is the effec-
tive fiber area;g50.05 ln 10a describes the fiber loss~with
a in dB/km). The effects of theN point optical amplifiers
deployed at zk5kZa /Z0(k50,1, . . . ,N21) on the pulse
power is accounted for through point transformations atzk
resulting in the periodic self-phase modulation~nonlinear!
coefficientc(z).

First, we consider the caseL>Za . To be specific, let us
consider as an example, two-step dispersion map with
amplification distanceZa km and dispersion compensatio
periodL52M3Za km5Z0 km (m51,n52M ). Dispersion
d(z)5d1^d& if 0 ,Z,M3Za 5L/2 andd(z)52d1^d&
if M3Za,Z,2M3Za5L. Mean-free functionR defined
above can be found asR(z)5dz2d/4 if 0,z,1/2 and
R(z)52d@z21/2#1d/4 if 1/2,z,1. After some calcula-
tions, it can be found that the kernel of the functionT(DV)
in such a system is

T~X!5
G21

G ln G

sin@XM#

M

1

~11@2X/ ln G#2!
H cos@X#

sin@X#

1
2 X

lnG

G11

G21J , X5
DVZa d

2L
5

DV d

4M
. ~14!

Here, gainG5exp@2gZa# (g is a fiber loss!. It is interest-
ing to look at some particular limits in this general formu
First, if d50 ~uniform dispersion along the system! we re-
produce the result of Mollenaueret al.: T(DV)5(G
If

r-
r
s

e

.

21)/(G ln,G) and becauseT is a constant, path-average
model is just the integrable NLS equation. Second limit
the so-called ‘‘lossless’’ model@15# (g50). In this case,
T(DV)5sin@DV d/4#/@DV d/4#. We justify now the use of
the ‘‘lossless’’ system@15# for modeling of the practical
~with fiber loss! fiber transmission system. It is interestin
that developed here theory confirms that the periodic am
fication and dispersion compensation can be handled as s
rate problems, provided that amplification distance is s
stantially different from the period of dispersion map. This
illustrated by Fig. 1 where transfer functionT(DV) is shown
by solid line for differentM ~hereZa550 km anda50.21
dB/km!. It is seen that forM.1 functionT(DV) is indeed
getting close and close to that one~shown by dotted line! for
the ‘‘lossless’’ modelT(DV)5sin@DV d/4#/@DV d/4# mul-
tiplied by the path-averaged factor (G21)/(G ln G). For
M53 two curves are almost the same up toX'2 and for
M510 the curves are about identical up toX'3. Small
deviation near the regionX'p corresponds to quasi
resonance due to the first term in the brackets and is
important for pulses with the spectral width of the order
one in the dimensionless units. Obtained result proves
the power budget and the dispersion mapping, effectiv
can be handled separately in long-haul transoceanic op
communication systems where amplification distance is ty

FIG. 1. Matrix elementT(X) ~in the system withL52 M Za

>Za) is plotted for differentM: bottom M51, middleM53 and
top M510. Here amplification distanceZa550 km, a50.21 dB/
km.
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3130 PRE 61TURITSYN, TURITSYNA, MEDVEDEV AND FEDORUK
cally much shorter than the dispersion compensation per
In Fig. 2 it, is shown functionuT(X,Za)u2 for differentX and
Za ~the same loss as in Fig. 1! varying in the interval from 25
km to 60 km. Maximum atX50 slowly decays withZa , but
for any amplification distance there are some points at wh
T50. Note that the points at whichT(DV)50 correspond
to advanced dispersion maps with suppressed four-w
mixing @16#.

IV. PATH-AVERAGE MODEL FOR DM SYSTEMS WITH
SHORT-SCALE DISPERSION MANAGEMENT:

LÏZa

Next we consider a new regime with a short-scaleL
!Za , and a general caseL<Za) dispersion managemen
Optical fibers withL!Za have recently been manufacture
by Corning @17#. Traditional dispersion management typ
cally assumesL>Za ~see, e.g., Refs.@15,12,18,19,14,20#
and references therein!. Recall that ultrashort, power
enhanced DM solitons in the traditional systems withL
>Za typically have too high power to be realized in practi
@20#. It is of interest to find stable propagation regimes w
short- and low-power solitons. As it has been shown in R
@21# rather short (<5 ps) DM solitons in systems with th
short-scale dispersion management could have low eno
energy to provide for stable ultra high-bit-rate (>40 Gb/s
per channel! transmission. Here, we present a theory of so
tons in systems with a short-scale management (L!Za) and
demonstrate that a path average propagation in this reg
~even with thelarge variations of the dispersion! can be
described by the integrable NLS equation. Again to be s
cific, let us consider a two-step dispersion map with the a
plification distanceZa5Z0 (n51) and dispersion compen
sation periodL5Za /m km ~or 1/m in the normalized units!.
Normalized dispersion d(z)5d1^d& if k/m,z,(k
10.5)/m and d(z)52d1^d& if ( k10.5)/m,z,(k
11)/m, herek50,1,2, . . . ,m21. Mean-free functionR de-

FIG. 2. FunctionuT(X,Za)u2 for differentX andZa in the inter-
val from Za525 km to 60 km. Maximum atX50 slowly decays
with Za , but for any amplification distance there are some point
which T50.
d.

h

ve

f.

gh

-

e,

e-
-

fined above can be found asR(z)5d(z2k/m)2d/(4m) if
k/m,z,(k10.5)/m and R(z)52d@z2k/m21/(2m)#
1d/(4m) if ( k10.5)/m,z,(k11)/m. After some calcula-
tions, it can be shown that the matrix elementTv123 in such
a system is

Tv1235
G21

G ln G
cos@C#H cos@Y2C# G1/(2m)2cos@Y1C#

G1/(2m)21

2 i
sin@Y2C#G1/(2m)1sin@Y1C#

G1/(2m)11
J . ~15!

Here, C5arctan@dDV/ln G#5arctan@4mY/ln G#, Y5dDV/
(4m). FunctionTv1235T(Y) is plotted in Fig. 3 for different
m. Here,a50.21 dB/km,Za560 km. Real~top! and imagi-
nary ~bottom! parts ofT are plotted for differentm: m52
~dashed line!, m510 ~solid line! and m520 ~dotted line!.
For the real part ofT one cannot see difference between thr
curves on this scale. Power of a parasitic signal occuring
to four-wave mixing is proportional touTu2 ~Ref. @16#!. In
Fig. 4 it is plotted functionuT(Y)u2 versusY . Herem510
and Za540 km. The formula~15! can be rewritten in the
following form

t

FIG. 3. Matrix elementT(Y) in the system withL5Za /m
,Za . Real~top! and imaginary~bottom! parts ofT are plotted for
different m: dashed linem52, solid linem510 and dotted linem
520. On the top figure one cannot see difference between t
curves on this scale. Here,Za560 km, a50.21 dB/km.



si

n.

g
a

to

ig
t

il
f
-

f

ess
is

the
the

ess,
true
m-
n
ss

for
nd
p-
to

er

n

cal

d

PRE 61 3131AVERAGED MODEL AND INTEGRABLE LIMITS IN . . .
T~Y!5
G21

G ln G

1

11S 4mY

lnG D 2 H exp~2 iY!

1
4mY

lnG FsinY
G1/(2m)11

G1/(2m)21
1 i cosY

G1/(2m)21

G1/(2m)11
G J .

~16!

Next, we estimate the matrix element of the qua
identical transformation

uS~DV!u<U E
0

1c~z!@exp~ iDVR~z!!21#

DV
dzU

<E
0

1

uc~z!R~z!udz<max~R!^c&5
^c&d

4m
.

One can see that with increase ofm ~for the fixed other
parameters! the path-averaged model~8! governing DM soli-
ton propagation converges to the integrable NLS equatio
is seen also from Fig. 3 that with the increase ofm the
imaginary part ofT decreases, but the real does not chan
significantly. It is interesting to note that in the limit of
very short-scale management~large m) we again get forT
the lossless model approximation multiplied by the fac
(G21)/(G ln G): T(Y)5sin@DVd/(4m)#/@DVd/(4m)#*(G
21)/(Gln G). However, increase ofm ~decrease ofL) under
the fixed characteristic bandwidth of the signal makes ins
nificant oscillatory structure of the kernel. This means tha
T(Y) is practically concentrated in some regionDY, then for
largem corresponding region ind DV will be larger than for
smallm. For the pulses with the same spectral width this w
mean thatT is much flatter for largem and, as a matter o
fact, for largem ~small L) function T can be better approxi
mated by a valueT(0). As a result, NLSE model works
rather well in this limit and solution~of the path-averaged

FIG. 4. Function uT(Y)u2 versus Y for the system withL
5Za /m,Za540 km. Herem510, a50.21 dB/km.
-

It

e

r

-
if

l

model! should be close to cosh-like soliton of the NLSE. O
course, the functionuS(Y)u increases with the growth ofL
and is not small in the opposite limitZa!L ~lossless model!.
Therefore, the shape of DM soliton in the lossless model@15#
~and large variations of the effective dispersion! is not cosh
as it is in the considered model. In contrast to the lossl
model, evolution of soliton parameters over one period
highly asymmetric here due to loss. Rapid variations of
pulse width, peak power and chirp are accompanied by
exponential decay of the power due to loss. Neverthel
numerical simulations have revealed that there exists a
periodic solution that reproduces itself at the end of the co
pensation cell~in this case - at the end of the amplificatio
period!. Note that though it is known that for the lossle
model in the so-called weak map limit@15,12,18,19# DM
soliton has shape close to cosh, this is not so obvious
system with loss and different periods of amplification a
dispersion variations. It is intersting to mention that chir
free points in this highly assymetrical map are pretty close
their positions in the lossless model - in the middle of fib
pieces:ZCFP5L/4 or 3L/4.

V. RESONANCE CASE LÄZa

Now we consider in more detail an important limitZa
5L. Consider for simplicity~more complicated systems ca
be analyzed in a similar manner! again ‘‘symmetrical’’ ~re-
call that due to loss pulse evolution now is not symmetri
here as opposite to the lossless model! dispersion map with
normalized dispersiond(z)5d1^d& if 0 ,z,1/2 andd(z)
52d1^d& if 1/2,z,1. Recall that distance is normalize
here byL. Mean-free functionR is R(z)5d z2d/4 if 0,z
,1/2 andR(z)52d@z21/2#1d/4 if 1/2,z,1. The matrix
elementTv123 in this case reads

Tv1235
exp@2gL1 idDV/4#2exp@2 idDV/4#

22gL1 idDV

1
exp@22gL2 idDV/4#2exp@2gL1 idDV/4#

22gL2 idDV
.

~17!

Here,G5exp@2gL#, Z05Za5L. After simple manipulations
we get for matrix elementTv123

Tv1235
G21

G ln G

1

11S 4Y

lnGD 2 H 2
8iY

ln G

AG

G21
exp~ iY!

1F i4Y

ln G

G11

G21
11Gexp~2 iY!J . ~18!

Here, C5arctan@dDV/ln G#5arctan@4Y/ln G#, Y5dDV/4.
In another presentation,Tv123 takes the form

Tv1235
G21

G ln G
cos@C#H cos@Y2C#AG2cos@Y1C#

AG21

2 i
sin@Y2C#AG1sin@Y1C#

AG11
J . ~19!
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Let us also mention for completeness that the formula~19!
can also be rewritten as:

T~Y!5
G21

G ln G

1

11S 4Y

lnGD 2 H exp~2 iY!1
4Y

lnG FsinY
AG11

AG21

1 icosY
AG21

AG11
G J . ~20!

It is seen thatT(0)5(G21)/(G ln G) andY50 is the point
of maximum ofuT(Y)u2. Similar, but a little bit more com-
plicated formulas can be derived when transmission
compensating fibers have different losses and dispersi
The results for specific fiber systems~for instance, standard
monomode fiber plus dispersion compensating fiber! will be
published elsewhere.

VI. CONCLUSIONS

In conclusion, we have presented a general theory of
soliton propagation in systems with different~rational com-
e
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ev

ec

u
d
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ry

t.
d
s.

mensurable! periods of the amplification and dispersion com
pensation. Using Hamiltonian averaging and quasi-ident
transformation, we have shown that in some specific lim
nonlinear wave propagation in system with periodica
varying dispersion and nonlinearity can be described by
integrable NLS equation. As a particular physical applicat
of the general theory, it is shown that the path-averag
propagation model in fiber systems with the short-scale
persion management~when compensation periodL is much
shorter than the amplification distanceZa) in the leading
order is close to the integrable NLS equation. Derived f
mulas for matrix elementTv123 play crucial role in the de-
scription of four-wave mixing@16#. This important applica-
tion of the developed theory will be presented elsewhere
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