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Averaged model and integrable limits in nonlinear double-periodic Hamiltonian systems
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We derive average propagation model for a nonlinear wave dynamics in media with periodically varying
parameters considering a general case with different periods of the nonlinearity and dispersion oscillations.
Applying quasi-identical canonical transformation we find the conditions when the averaged Hamiltonian
dynamics is close to an integrable model. We apply general theory to the practical problem of optical signal
transmission in fiber lines with short-scale dispersion management.
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I. INTRODUCTION tion [11-13 we demonstrate that the averaged dynamics of
Propagation of powerful, high-frequency nonlinear Wavehigh—frequency nonlinear wave in systems with large-
. SR i Lo I - —amplitude, periodic variations of dispersion and nonlinearity
in media with varying dispersion is a fundamental physical,,, e described in some particular limits by the integrable
problem with a wide range of practical applications like, for | g As a specific physical and practical application of the
instance, optlcal pulse transmission in dlsper3|or}-manageéienera| analysis, we present path-averaged theory of DM
(DM) fiber lines[1], a stretched pulse generation in mode-transmission lines with different periods of the power varia-
locking fiber laser system2], propagation of high intensi- tjon and dispersion compensation.
ties beams in second order nonlinear media with periodic
poling (see, e.g., Ref.3] and references thergirevolution || BasiC MODEL AND QUASI-IDENTICAL TRANSFORM
of soliton in a periodically modulated nonlinear wave guide
and other applications. Of particular interest is an optical Evolution (in z) of a high-frequency wave in medium
pulse transmission in fiber, that is a superb demonstration d¥ith periodically varying dispersion and nonlinearity is gov-
practical application of the fundamental soliton thepty-g]. ~ €ned by the NLSE with periodic coefficients that can be
The traditional path-averaged soliton propagation in fibetVritten in the Hamiltonian form
lines with uniform (or even weakly varyingdispersion is A
governed[7,9] by the integrablg4] nonlinear Schrdinger iﬁ_:
equation(NLSE). Integrability of the NLSE makes possible 9z
to apply powerful mathematical method of the inverse scat- o
tering transforn{4] to a variety of practical problem@ee, With the Hamiltonian
e.g., Refs[5-8]). Experimenta[9] (and even first commer- ec(2)
cial [10]) implementations of the multichannel soliton trans- H =J [d(z)|At|2_ —|A|4]dt, 2
mission have stimulated further studies in soliton theory. In 2
par_tlc_ular, sollFon propagation in the_ systems with Iargeand the Poisson brackets are defined as
variations of dispersion and nonlinearity has recently been
put in the focus of intensive researfh,2,9,12—-21. Tradi-
tional soliton solution of the NLSE with uniform dispersion {F'G}:f
and without loss realizes continuous balance between nonlin-
earity and dispersion. Variations of dispersion and nonlinear- ~ ~
ity make impossible in general case to support such balance Here periodic functiord(Z)=d+(d) ((d)=0) describes
continuously. Nevertheless, a balance between nonlinear eyarying dispersion with the peridd (in real world unitg and
fects and dispersion can be achieviedaverageover the ¢(Z) corresponds to power oscillations with the periog.
compensation period. Because of the fundamental and pra¥Ve consider a general case wHeandZ, are rational com-
tical importance of this problem, it is of interest to develop mensurable, namelynZ,=mL=Z, with integern and m.
generic theoretical methods to analyze properties of the basithis includes as particular limits all known and studied cases
model that can be used in a variety of specific applicationsand allows us to describe a novel regime with short-scale
In this paper, generalizing our previous results we derivdL <Z,) management. The distanee=Z/Z, is normalized
path-average model in a case of differémttional commen- by a minimal common period, of the functionsd andc and
surablé periods of nonlinearity and dispersion oscillations. the averaging throughout the paper is over this period. In the
This general model includes all previously studied physicanormalized units 1-periodid andc have basic periods 11/
systems and also describes a new regime with short-scaénd 1h, respectively. Small parameterZ,/Zy, (see, e.g.,
dispersion oscillations. Applying quasi-identical transforma-Refs.[1] and[12]) is proportional to the pulse poweZ (.

H
=—d(2)Ax—€c(2)|A?2A, (1)
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here is a characteristic nonlinear sgalErue breathing soli- 1

ton presents a solution of Eql) of the form A(z,t) Tw123:<Gw123>=J Gu1242)dz
=exp(kz)F(zt) with a periodic functionF(z+ 1t) =F(z,t). 0

Of interest is to find a systematic way to describe a family of 1 _

periodic solutionsF with different quasi-momenturk. The = fo c(z)exp{iAQR(z)}dz (7)

basic idea suggested in R¢L2] (see alsd1,13,14,19is to

use a small parameterto derive path-averaged model that |, he leading order ire, a path-averaged equation has the
gives regular, leading order iy description of the breathing torm

soliton. Averaging cannot be performed directly in Ef.in

the case of the large variations d&(d). However, path- 0P, 2

averaged propagation equation can be obtained in the fre- 'E_<d>“’ ‘Pw+6j Tu1230(0+ w1~ w0y~ w3)
quency domain12]. In this paper we show that in some

important limits an averaged equation for periodic breathing X ¢ ¢2¢3dw;dw,dw;=0, 8

pulse can be transformed to th@egrableNLS equation. ] o )
First, to eliminate the periodic dependence of the linear! "€ corresponding averaged Hamiltonian H is
part we apply followind 12] the so-called Floquet-Lyapunov

; T,
transformatior{ 11] <H>:<d>f w2|%|2dw_sf 2123
Aw=¢wexp{—iw2R(z)}, %Zd(Z)—(d)_ 4) X 6(w+ wl—wz—wg)@fu@’l‘ pr03dwdwdw,dws.
9
Here, A,=A(w,z) is a Fourier transform ofA(t,z) The Hamiltonian averaging introduced here presents a

= [A,exd —iwt]dw. Important observatiofwill be used be- regular way to calculate next-order corrections to the aver-

low) is that for a fixed amplitude af amplitude of the varia- aged model. From the Hamiltonian structure of the starting

tion of the functionR decreases with the increasemflt can  equation it is clear that the matrix elemeh},,3 has the

be easily found that m@R(z)Je<1/m. In the new variables the following symmetries T 125= T1423= To130= T53,1- Note

equation takes the form that the Eq.(8) possesses the remarkable property. The ma-
trix elementT ,1,5=T(AQ) is a function ofAQ) and on the

e, , resonant surfaces+w;— w,— w3=0, AQ=w’+ w>— w3
i—— —(d)wd,+ EJ Gu12d2) 8w+ w1~ 0y~ w3) —»3=0, bothT,;,3and its derivative oveA() are regular.
This observation allows us to make the following quasi-
X ¢T ¢pr¢p3dwidw,dws=0, (5)  identical-like transformatiofi13], which eliminates the vari-

able part of the matrix elemeiit,;,5

here G,1,42)=c(z)expiAQR(2)} is 1l-periodic andAQ
= w?+ 03— w5— w3. Note thatG,,;,3 depends only on the L iJ To—Toias_,

e . A . . Pw aw al a2a3
specific combination of the frequencies given by the reso- (d) AQ
nance surfaceA(). Both the Fourier and the Floquet-
Lyapunov transform(4) are canonical and the transformed
HamiltonianH reads

XS w+w;—wry— w3)dwdw,dws, (10

whereT,=T(0). This transformation has no singularities. If
the integral part in this transform is small compared vaifh

Gw . .
H=<d)f w2|¢m|2da)—a‘f 2123 then in the leading order we get far,
oa, 2
X 8w+ w— wy— w3) Pk Y prpsdwdwdw,dws. 'E —(d)ywa,+ ef To
(6) ><5(w+wl—w2—w3)a’1°a2a3dw1dw2dw3=0. (11)
Now we apply Hamiltonian averaging. Let us make theThis is nothing more, but the integrable nonlinear Sehro
following change of the variables dinger equation written in the frequency domain. Obviously,
this transformation is quasi-identical only if the integral in
do=exg{eK, .. . }He,=0,— K, @ }+ - Eg. (10) is small compared witta,,. This is not true in a
general case and that is why, typical solution of(Bghas a
=<Pw+fj V1930( 0+ 01— 0p— w3) form [_14] different from' co_sh-shapeq NLSE soliton. How-
ever, if the kernel function in Eq10) is small

X @1 @2@3dw dwdwg+ - - -, To—Tu12dAQ)

AQ

IS(AQ)[= <1, (12
here the functional K=0.5V 1230(w+ 01— wy— w3)
X ¥ o1 prp3dwdw,dw,dws and V 1542) =i [§[ G104 7) then the averaged model can be reduced to the NLSE. In

—Ty123ld7+i V,1540), (V4129 =0) with other terms, this is a condition on the functioo&) and
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d(z) that makes possible quasi-identical transformation. If 040 (—
the condition(12) is satisfied we can express solutions of the B M=10
Eq. (8), and, consequently, of the original E{. via solu- T(x)
tions of the NLSE in the explicit form: H
0.00 _".. :."."......“'o,....-'-.....m@.w.n ........... PRCTTIRRTERS

A(t,z)=J awe{*iwt*“”zR}dereJ W, 1,45 aya,

><5(w+wl—wg—a)3)dw1dw2dw3dw, I~
_0.40IIIIIIIIIIIIIIIIIII|IIIIIIIII|

here W, 1042) =[V,125~ (To— Tw129 /{(d)AQ Jexp{—iwt 0.00 2.00 4.00 6.00

—iw?’XR(2)} anda,, is a solution of the NLSE11).

Ill. PATH-AVERAGE MODEL FOR DOUBLE-PERIODIC
DM SYSTEMS WITH L>Z, (LONG-HAUL FIBER
TRANSMISSION LINES)

Now we apply developed above general theory to a par-
ticular, but important physical problem, namely we consider i
soliton transmission in fiber lines. In the optical applications g4 lo v vl bl X

the periodic functionsl(z) andc(z) are 0.00 200 4.00 6.00
0.40

\3D(2)Z,
7)=——
47TC|t0

T(x) [

c(2)=PoZooexd —2Zy,y(z—2z,)], 0.00

2 SZ2<Zyyq (13 -

Here, t, is a characteristic time paramet@¥, is a char- 4o 'z_loo' e '4.'00' e '6.'00 X
acteristic powerg, is the speed of light\ is the operating
wavelengthD(z) is the dispersion coefficient varying along  FIG. 1. Matrix elemenfT(X) (in the system withh,=2M Z,
the fiber line; the nonlinear coefficient=2m n,/(AoAetf)  =Za) is plotted for differentM: bottomM =1, middleM =3 and
wheren,, is the nonlinear refractive inded.; is the effec- top M=10. Here amplification distanc2,=50 km, «=0.21 dB/
tive fiber area;y=0.05In 1Qv describes the fiber logsvith km.
a in dB/km). The effects of theN point optical amplifiers

deployed atz,=kZ,/Zo(k=0,1,...N—1) on the pulse _1)/GIn,G) and becausd is a constant, path-averaged
power is accounted for through point transformationgat  mogel is just the integrable NLS equation. Second limit is
resulting in the periodic self-phase modulatigmonlineay the so-called “lossless” model15] (y=0). In this case,

coefficientc(z). N T(AQ)=SsiMAQ d/4)/[AQ d/4]. We justify now the use of

First, we consider the cade=Z,. To be specific, let US 5 «|oggless” system[15] for modeling of the practical
consider as an example, two-step dispersion map with thg,in finer losg fiber transmission system. It is interesting
amplification distanceZ, km and dispersion compensation yhat developed here theory confirms that the periodic ampli-
periodL =2M X Z, km=Z, km (m=1n=2M). Dispersion  fication and dispersion compensation can be handled as sepa-
d(z)=d+(d) if 0<Z<MXZ, =L/2 andd(z)=—d+(d)  (ate problems, provided that amplification distance is sub-
if MXZ,<Z<2MXxZ,=L. Mean-free functionR defined  ganially different from the period of dispersion map. This is

above can be found aR(z)=dz—d/4 if 0<z<1/2 and jystrated by Fig. 1 where transfer functiGifAQ) is shown
R(z)=—d[z—1/2]+d/4 if 1/2<z<1. After some calcula- p soid fine for differentM (hereZ,=50 km anda=0.21

tions, it can be found that the kernel of the functibfd Q) g4g/km). It is seen that foM>1 function T(AQ) is indeed
in such a system is getting close and close to that ofghown by dotted lingfor

. the “lossless” modelT(AQ)=siMAQ d/4]/[ AQ d/4] mul-
G—1 siNXM] 1 cog X]

T(X)= . tiplied by the path-averaged factoG1)/(GInG). For
GInG M (1+[2X/InG]?) | sin(X] M =3 two curves are almost the same upXe-2 and for
M =10 the curves are about identical up Xz=3. Small

2X G+1 _AQZ,d_AQd deviation near the regiorX~ corresponds to quasi-

InG G—-1|’ 2L AM (14) resonance due to the first term in the brackets and is not

important for pulses with the spectral width of the order of
Here, gainG=exd2yZ,] (v is a fiber loss It is interest-  one in the dimensionless units. Obtained result proves that
ing to look at some particular limits in this general formula. the power budget and the dispersion mapping, effectively,
First, if d=0 (uniform dispersion along the systgme re- can be handled separately in long-haul transoceanic optical
produce the result of Mollenaueet al: T(AQ)=(G communication systems where amplification distance is typi-
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cally much shorter than the dispersion compensation period ] v
In Fig. 2 it, is shown functiodT(X,Z,)|? for differentX and 001
A A . a_ . 0.01 L L O O L L O R
Z, (the same loss as in Fig) tarying in the interval from 25 000 10.00 2000 2000 000

km to 60 km. Maximum aX=0 slowly decays wittZ,, but

for any amplification distance there are some points at which  FiG. 3. Matrix elementT(Y) in the system withL=2,/m

T=0. Note that the points at which(A{)) =0 correspond <z, . Real(top) and imaginarybottom parts of T are plotted for

to advanced dispersion maps with suppressed four-wavgifferentm: dashed linen=2, solid linem= 10 and dotted linen

mixing [16]. =20. On the top figure one cannot see difference between three
curves on this scale. Her&,=60 km, =0.21 dB/km.

IV. PATH-AVERAGE MODEL FOR DM SYSTEMS WITH
SHORT-SCALE DISPERSION MANAGEMENT: fined above can be found &{z) =d(z—k/m)—d/(4m) if
L<Z, k/m<z<(k+0.5)/m and R(z)=-d[z—k/m—1/(2m)]
+d/(4m) if (k+0.5)/m<z<(k+1)/m. After some calcula-

Next we consider a new regime with a short-scale ( (jons it can be shown that the matrix elemahy,sin such
<Z,, and a general casde<Z,) dispersion management. a system is

Optical fibers withL<Z, have recently been manufactured
by Corning[17]. Traditional dispersion management typi-
cally assumed.=Z, (see, e.g., Refs[15,12,18,19,14,20
and references thergin Recall that ultrashort, power- G-
enhanced DM solitons in the traditional systems with Twl23:m
=Z, typically have too high power to be realized in practice
[20]. It is of interest to find stable propagation regimes with . 2(2m) | o
short- and low-power solitons. As it has been shown in Ref. —j sinlY — ]G )+SII"{Y+‘I’]] )
[21] rather short €5 ps) DM solitons in systems with the GYem 41
short-scale dispersion management could have low enough

energy to provide for stable ultra high-bit-rate=40 Gb/s

per channegltransmission. Here, we present a theory of soli-Here, ¥ =arctafidAQ/In G]=arctafdm¥Y/In G], Y=dAQ/

tons in systems with a short-scale managemer¢Z,) and  (4m). FunctionT ,1,5= T(Y) is plotted in Fig. 3 for different
demonstrate that a path average propagation in this regime). Here,a=0.21 dB/km,Z,=60 km. Real(top) and imagi-
(even with thelarge variations of the dispersioncan be nary (bottom parts of T are plotted for differentn: m=2
described by the integrable NLS equation. Again to be spefdashed ling m=10 (solid line) and m=20 (dotted line.

cific, let us consider a two-step dispersion map with the am#or the real part o one cannot see difference between three
plification distanceZ,=Z, (n=1) and dispersion compen- curves on this scale. Power of a parasitic signal occuring due
sation period.=Z,/m km (or 1/m in the normalized units  to four-wave mixing is proportional t¢T|? (Ref. [16]). In
Normalized dispersion d(z)=d+(d) if k/m<z<(k Fig. 4 it is plotted functioT(Y)|? versusY . Herem=10
+0.5)/m and d(z)=-d+({d) if (k+0.5)/m<z<(k andZ,=40 km. The formula(15) can be rewritten in the
+1)/m, herek=0,1,2 ... m—1. Mean-free functiolR de-  following form

cogY—P]GYM —cod Y+ V]

cog V] Glem_q

(19
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STE — Ty 2[6""(_”)
1+(—)
InG

T(Y)=

Gl/(2m)+ 1 Gl/(2m)_ 1
sinY

STE +1 cosY

Glem 1

|

(16)

Next, we estimate the matrix element of the quasi-

identical transformation

1c(2)[exp(iAQR(2))—1
|S(AQ)|sUO (2)[ xp(uAQ (2)) ]dz‘

< ! - _<C>d

\JO lc(2)R(2)|dz=maxR)(c)= 5 .

One can see that with increase wf (for the fixed other
parametersthe path-averaged mod@) governing DM soli-
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mode) should be close to cosh-like soliton of the NLSE. Of
course, the functionS(Y)| increases with the growth df

and is not small in the opposite linit,<L (lossless modgl
Therefore, the shape of DM soliton in the lossless motig]
(and large variations of the effective dispersi@ not cosh

as it is in the considered model. In contrast to the lossless
model, evolution of soliton parameters over one period is
highly asymmetric here due to loss. Rapid variations of the
pulse width, peak power and chirp are accompanied by the
exponential decay of the power due to loss. Nevertheless,
numerical simulations have revealed that there exists a true
periodic solution that reproduces itself at the end of the com-
pensation cellin this case - at the end of the amplification
period. Note that though it is known that for the lossless
model in the so-called weak map limii5,12,18,19 DM
soliton has shape close to cosh, this is not so obvious for
system with loss and different periods of amplification and
dispersion variations. It is intersting to mention that chirp-
free points in this highly assymetrical map are pretty close to
their positions in the lossless model - in the middle of fiber
pieces:Zcgp=L/4 or 3L/4.

V. RESONANCE CASE L=Z,

Now we consider in more detail an important lin2dt,
=L. Consider for simplicitymore complicated systems can
be analyzed in a similar mannexgain “symmetrical” (re-
call that due to loss pulse evolution now is not symmetrical
here as opposite to the lossless modi$persion map with
normalized dispersiod(z) =d+(d) if 0<z<1/2 andd(z)
=—d+(d) if 1/2<z<1. Recall that distance is normalized
here byL. Mean-free functiorR is R(z)=d z—d/4 if 0<z
<1/2 andR(z) = —d[z— 1/2]+d/4 if 1/2<z< 1. The matrix
elementT , 1,3 in this case reads

ex] — yL +idAQ/4]—ex{] —idAQ/4]

0123~

2L +idAO
exq — 2yL—idAQ/4]— ex — yL +idAQ/4]
* —2,L—idAQ '

17

Here,G=exd 2], Zo=Z,=L. After simple manipulations
we get for matrix element ;o5

ton propagation converges to the integrable NLS equation. It

is seen also from Fig. 3 that with the increase nofthe

imaginary part ofT decreases, but the real does not change
significantly. It is interesting to note that in the limit of a

very short-scale managemefeirge m) we again get forT

the lossless model approximation multiplied by the factor

(G-1)/(GInG):  T(Y)=siMAQd/(4m)J[[AQd/(4m)]*(G
—1)/(GIn G). However, increase o (decrease of) under

_G-1 1 8iy G _
01237 51N G NE 2| " ihG o1 oY)
InG
4Y G+1 . s
+ R—G_l'f' eX[X_I ) . ( )

the fixed characteristic bandwidth of the signal makes insigHere, ¥ = arctafidAQ/In G]=arctaf4 Y/In G], Y=dAQ/4.
nificant oscillatory structure of the kernel. This means that ifiy another presentatiof,, ;,3 takes the form

T(Y) is practically concentrated in some regidl, then for
largem corresponding region id AQ) will be larger than for

smallm. For the pulses with the same spectral width this will
mean thafl is much flatter for largen and, as a matter of
fact, for largem (smallL) functionT can be better approxi-
mated by a valuer(0). As aresult, NLSE model works
rather well in this limit and solutiorfof the path-averaged

Y—¥]JG—codY+W¥
To125= GInG GCOS{‘P]{ cod ] cod ]

JG-1
SifY—V]JG+sifY+V¥]
| \/6-‘1-1 .

(19
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Let us also mention for completeness that the forn{t®  mensurableperiods of the amplification and dispersion com-

can also be rewritten as: pensation. Using Hamiltonian averaging and quasi-identical
transformation, we have shown that in some specific limits

JG+1 nonlinear wave propagation in system with periodically

4Y
T(Y)= G InG Z[exp( 1Y)+ InG sinY JG—1 varying dispersion and nonlinearity can be described by the
( InG integrable NLS equation. As a particular physical application
of the general theory, it is shown that the path-averaged
JG-1 propagation model in fiber systems with the short-scale dis-
+icosY (20 persion managemeifvhen compensation periddis much
VG+1 shorter than the amplification distan@g) in the leading

order is close to the integrable NLS equation. Derived for-
mulas for matrix element ;1,5 play crucial role in the de-
cription of four-wave mixing16]. This important applica-
lon of the developed theory will be presented elsewhere.

Itis seen thaf (0)=(G—1)/(GInG) andY=0 is the point

of maximum of| T(Y)|2. Similar, but a little bit more com-
plicated formulas can be derived when transmission ani
compensating fibers have different losses and dispersion
The results for specific fiber systerffer instance, standard

monomode fiber plus dispersion compensating filglt be
published elsewhere. ACKNOWLEDGMENTS
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